

- ✓ Increase yield assessment accuracy
- ✓ Reduce solar resource risk
- Secure financing
- ✓ Optimize costs
- ✓ Account for interannual variability

Why SolarAnywhere?

Trusted tuning methodology

Account for site-specific clear sky bias and seasonal variation; KSI goodness-of-fit test and dual sliding window corrections

Cost effective

Pays for itself by reducing solar resource uncertainty and project risk

Ouick turnaround

Typically completed in 10 business days or less (expedited studies available)

Combine the site specificity of ground station measurements with the interannual insights of long-term satellite-based data

Solar meteorological (MET) station measurements and satellite-based data each have their own distinct advantages. With a site-adaptation (ground-tuning) study, PV project engineers can access the benefits of both data sources to reduce solar resource risk and increase yield assessment accuracy.

Satellite-based SolarAnywhere irradiance data offers the long-term (25+ year) insights required to assess interannual variability and probability of exceedance levels. Ground station measurements offer increased site-specificity, especially if meteorological instruments are well-maintained.

Tuning SolarAnywhere data with high-quality, ground-measured data results in a solar resource dataset with lower uncertainty than either source independently.

Interested in learning more?

For details, pricing information or to request a sample site-adaptation study report, reach out to our team at **solaranywhere.com/contact**

Site-adaptation study deliverables

Solar resource assessment report

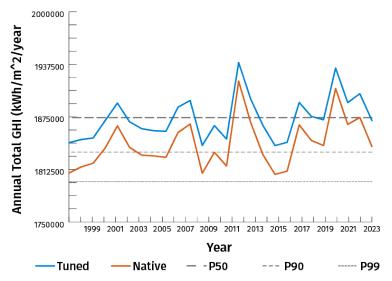
- A bankable report characterizing solar resources and uncertainty for your project
- Comparative metrics between your ground data and SolarAnywhere's satellite-derived irradiance dataset

Solar resource data files tuned to your ground measurements

- 25+ years of time-series (1998–present) at a temporal resolution of up to 15 minutes, spatial resolution of 1 km
- Typical GHI Year
- Typical DNI Year

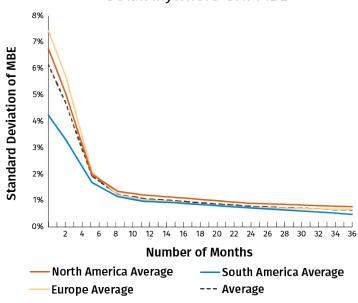
SolarAnywhere site-adaptation methodology

SolarAnywhere site-adaptation studies employ a tuning methodology that combines at least 12 months of ground-based measurements (GHI, wind speed, temperature) with long-term SolarAnywhere time-series irradiance data. Using the overlapping period of ground measurements and SolarAnywhere satellite-derived data, SolarAnywhere analysts correct for observed clear sky bias and seasonal variation.


Cumulative distribution between the two datasets is further decreased through a goodness-of-fit test and dual sliding window corrections. These adjustments are applied across the entire historical SolarAnywhere GHI dataset, producing tuned time-series data from 1998–present for solar resource assessment and financing.

GroundWork

As the accuracy of site-adaptation studies is directly impacted by the accuracy of your ground measurements, high-quality MET station data is critical. SolarAnywhere is proud to partner with GroundWork Renewables due to their gold-standard ground data program.


Native vs. Tuned Data

Site adaptations lower uncertainty by correcting solar resource (TMY) based on observed data.

Utilizing SolarAnywhere satellite-based data and at least 12 months of ground measured reference data, it is possible to achieve a site-adapted data uncertainty as low as 1.2%.

Standard Deviation of Site-Adapted SolarAnywhere GHI MBE

1K. Wagner, A. Kubiniec, T. McAlister and R. Perez, "The Importance of Data Quality for Reducing the Uncertainty of Site-Adapted Solar Resource Datasets," 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC), San Juan, PR, USA, 2023, pp. 1-5, doi: 10.1109/PVSC48320.2023.10360048.

About SolarAnywhere

SolarAnywhere solar resource data and intelligence supports the entire solar lifecycle—from prospecting and development, to asset management and production forecasting. To learn more about industry-leading solar data and services from Clean Power Research, visit solaranywhere.com.